Tratamento de dados em alta frequência e estimação de medidas de volatilidade: um estudo de caso para petr4

Alcides Carlos Araújo, Alessandra Montini

Resumo


O artigo tem objetivo de analisar o tratamento de dados em alta frequência para a estimação de medidas de volatilidade percebida (realized volatility - RV). Para atingir os objetivos, buscou-se analisar as metodologias para limpeza de outliers e agregação dos preços. Para os métodos de agregação, consideraram-se as seguintes formas de amostragem: último preço negociado; preço ponderado pelo volume; preço ponderado pelo logaritmo do volume; preço ponderado pelo número de negociações; mediana dos preços e preços de maior volume associado. Foram estudadas as métricas RCov (sensível a problemas de microestrutura), rOWCov, medRV, minRV e rRTSCov, consideradas robustas a saltos e ruídos de microestrutura. Quanto aos resultados, observou-se que a remoção de outliers não influenciou de maneira significativa o processo de estimação da volatilidade percebida. Em relação à análise de agregação dos preços, por meio de uma simples mudança na metodologia, observaram-se diferenças significativas nas estimativas das volatilidades percebidas. Para a análise dos métodos de agregação, considerando as seis formas de amostragem, verificou-se que todas as medidas foram sensíveis às mudanças na forma de amostragem para agregar os preços. Do ponto de vista prático, gerenciar dados em alta frequência é um desafio devido à necessidade de manipulação de grandes bases. Por esse motivo, a não correção de possíveis problemas nos bancos de dados pode gerar estimativas de variabilidade imprecisas para a gestão de riscos. O artigo contribui por realizar uma revisão dos estimadores da volatilidade percebida mais recentes, buscando comparar a consistência em relação às diferentes formas de agregação e tratamento da série de preços.

Texto completo:

PDF


DOI: http://dx.doi.org/10.5020/2318-0722.23.2.262-276

Métricas do artigo

Carregando Métricas ...

Metrics powered by PLOS ALM


Licença Creative Commons
Este obra está licenciado com uma Licença Creative Commons Atribuição 4.0 Internacional.
Revista Ciências Administrativas, Fortaleza - Ceará- Brasil – E-ISSN: 2318-0722

Desenvolvido por:

Logomarca da Lepidus Tecnologia