APRESENTAÇÃO DO SISTEMA NAVSTAR, DO EQUIPAMENTO EÇOBATIMÉTRICO E SUAS UTILizações NA FUNCEME

Rogério Campos

RESUMO

Este artigo descreve o sistema de orientação por satélite NAVSTAR, conhecido no meio comercial por GPS. Este equipamento consiste de três segmentos básicos, dos quais apenas o do usuário interessa neste trabalho. Juntamente, apresenta o equipamento para pesquisas batimétricas de reservatórios, chamado ecobatimetro. Para ambos são apresentados usos e aplicações em pesquisas desenvolvidas pela FUNCEME - Fundação Cearense de Meteorologia e Recursos Hídricos.

ABSTRACT

This paper shows the satelite orientation system NAVSTAR, known like GPS in the business middle. This equipment have three basic segments, what only the user's segment is interesting in this work. Also, the work shows the equipment for reservoir survey, called fathometer. For both one it is shown its uses and applications in researches in development at FUNCEME - Fundação Cearense de Meteorologia e Recursos Hídricos.

1. O Sistema NAVSTAR

Desde o início da corrida espacial, percebeu-se que os satélites artificiais poderiam ser usados como referenciais geodésicos a fim de que servissem para um sistema de orientação na superfície terrestre.

A partir de 1967 o sistema TRANSIT está disponível para o meio civil, o qual permite a determinação de pontos com a precisão do decímetro na superfície da terra.

No fim da década de 70 e início da de 80, o Departamento da Defesa dos Estados Unidos uniu os dois programas paralelos, da Marinha e da Aeronáutica, que desenvolviam independentemente um sistema de orientação de alta precisão por satélites.

Este sistema que no meio civil é chamado vulgar-

* Engº, Civil (UNIFOR, 1989), MEng em Recursos Hídricos (UNICAMP, 1993), Professor de Hidráulica na UNIFOR, Pesquisador na FUNCEME.
mente de GPS (Global Positioning System), tem a
denominação oficial de NAVSTAR (Navigation System
Using Time and Ranging). Atualmente, ele conta com
uma constelação de 21 satélites que serão 24 ao todo
quando o sistema for completado. O sistema foi pro-
etrado para que fizesse um posicionamento preciso
24h por dia em qualquer lugar da superfície da terra.

Por problemas ligados à estratégia militar, para os
usuários civis, a precisão foi degradada pelo Pen-
tágono, em 95% do tempo. A degradação é feita através
de um código chamado S/A (Suitability Code) e pela
criptografia do código P (Precision Code), cujas chaves
somente os usuários militares americanos a têm. O
código P é criptografado apenas em algumas horas do
dia ou épocas do ano, como durante a guerra do golfo,
o que torna o erro superior a 25m.

Além destes dois há mais um código constituinte
do sistema chamado C/A (Coarse Code), sempre dis-
ponível durante as 24h do dia. Os códigos são enviados
às estações por duas ondas portadoras chamadas de
L1 e L2.

O que diferencia o preço das estações receptoras
é claro, a qualidade da precisão, é basicamente o uso
de uma ou duas portadoras, a resolução das suas
ambigüidades e a precisão do relógio.

A ambigüidade é o número de ondas que existem
entre os satélites e o receptor.

Os satélites e os receptores de alta precisão usam
relógios atômicos com precisão de 10^{-13}s. Os relógios
do satélites e das estações receptoras, devem estar
sincronizados durante as medidas, fato que não ocorre
entre os atômicos e os de quartzo usados nos recep-
tores mais baratos.

Os receptores mais simples usam apenas uma
onda portadora, não resolvem a ambigüidade e têm um
relógio de quartzo com precisão da ordem de 10^{-7}s.
Sendo assim, os receptores baratos, atingem uma pre-
cisão de apenas 100m, totalmente inadequada para
medidas topográficas e batimétricas.

Mesmo com todos os recursos que aumentam a
precisão, as estações ainda mantêm um erro inerente
à criptografia do código P e ao código C/A.

Para corrigir este erro, usa-se como artifício o
método diferencial. O método diferencial consiste do
uso de um par de GPS. Uma estação fixa (GPS fixo)
sobre um ponto de coordenadas conhecidas, retira os
erros e os envia por rádio para a estação que faz o
trabalho de campo (GPS móvel). Os erros podem tam-
bém ser armazenados e posteriormente, no escritório,
são feitas as correções dos dados de campo. Com o
método diferencial de aquisição de coordenadas, o
sistema recebe a denominação de DGPS. Com este
método, dependendo da qualidade do equipamento
como descrito acima, pode-se chegar a precisão de
milímetro.

O sistema NAVSTAR divide-se em vários seg-
mentos. O segmento do sistema que interessa aos
usuários, chama-se justamente de "segmento do
usuário". Ele consiste de uma pequena estação recep-
tora de satélite e uma antena portáteis.

2. Ecobatimetro

Ecobatimetro, é um equipamento que mede pro-
fundidades em superfícies submersas.

O Princípio de funcionamento é muito simples. Ele
consiste na utilização do tempo de percurso de uma
onda sonora emitida por um sensor imerso na água e a
velocidade do som no meio. Conhecendo-se a veloci-
dade do som no meio e o tempo que ele usa para
eroer um certo espaço, calcula-se o seu valor.
No caso, a profundidade.

O equipamento é dividido basicamente em três
partes.

1. A Unidade Central, a qual tem um visor de
cristal líquido, e em alguns modelos e nos
antigos, uma impressora para gravar con-
tinuamente a profundidade. No visor aparece
quando o equipamento está em operação, to-
dos os dados coletados (profundidade, velocis-
tude, temperatura da água, etc.), e os menus
de operação e controle. Nesta unidade ficam
os botões de controle e os circuitos eletrônicos.

2. O conector, é a peça que envia o som em direção
ao fundo e capta o seu eco. Com o tempo de
percurso, são processados na unidade central
os cálculos das profundidades. O sensor deve
ser instalado no fundo ou na lateral do barco.

3. Uma fonte de força que pode ser uma bateria,
gerador ou o alternador do próprio motor do
barco.

3. A Utilização dos Equipamentos

Os equipamentos descritos neste trabalho, serão
utilizados nas pesquisas desenvolvidas pela
FUNCEME nas suas diversas áreas de atuação espe-
cialmente em Recursos Hídricos.

A seguir, estão sumarizadas as suas principais
aplicações, que são realizadas pela FUNCEME.

3.1 GPS

1. Posicionamento geográfico de poços para lo-
calização em mapas e cartas.

2. Transferência de coordenadas geográficas.
Este serviço é realizado atualmente de forma
tradicional, com equipamentos topográficos, os
quais se utilizam de maior número de pessoas em campo e de maior tempo para a realização dos serviços, em comparação ao GPS. Também infere a erros superiores aos do GPS com precisão geodésica.

3. Mapeamentos.

3.2 Ecobatimetro

1. Execução de atualizações de curvas cota x área x volume de açudes. Os açudes com alguns anos de construção, necessitam de atualizar suas curvas-chave, uma vez que sofrem de assoreamento ao longo da vida útil. É comum encontrar-se reservatórios no Ceará, em que são usadas as curvas-chaves originais há mais de 70 anos. Este é o caso do açude Forquilha, na Zona Norte do Estado.

2. Determinação de curvas cota x área x volume nos reservatórios em que elas não existem.

3. Estudo do assoreamento de reservatórios. A destinação final dos dados de batimetria de açudes, é o estudo do seu assoreamento. Vários aspectos poderão ser investigados, tais como a distribuição dos depósitos de sedimentos no lago, os perfis dos deltas formados, a quantidade de material retido, a eficiência de retenção dos sedimentos pelo reservatório, etc.

3.3 Associação do GPS ao Ecobatimetro

Estão sendo desenvolvidos atualmente na FUNCME softwares que farão a associação entre os dois equipamentos. Há no mercado, entretanto, softwares de batimetria com GPS ao custo aproximado de US$ 12 mil.

Na realização dos trabalhos de batimetria, é necessário que se conheça a posição do barco (coordenadas x,y) em relação a um referencial. Este dado poderá ser fornecido pelo GPS. A profundidade (coordenada z), será dada pelo ecobatimetro.

Do poço destes, dados, elaborar-se-ão as curvas de nível do fundo do reservatório, dado fundamental para as pesquisas citadas no item 3.2.

REFERÊNCIAS BIBLIOGRÁFICAS
