Aditivos para fabricação por manufatura aditiva de pós-cerâmicos pela técnica de filamento fundido: uma breve revisão
PDF/A

Como Citar

Faccio, M., Catafesta, J. ., & Zorzi, J. E. . (2022). Aditivos para fabricação por manufatura aditiva de pós-cerâmicos pela técnica de filamento fundido: uma breve revisão. Revista Tecnologia, 42(1), 12. https://doi.org/10.5020/23180730.2021.11960

Resumo

A fabricação por filamento fundido (FFF) é um dos métodos de fabricação amplamente utilizado por manufatura aditiva por ser simples e barato. Esta técnica de fabricação é muito usada para obtenção de objetos de materiais poliméricos com formas geométricas complexas, mas que, quando aplicada na fabricação de peças cerâmicas a partir de pós, esbarra na dificuldade de encontrar formulações adequadas, que permitam a impressão de peças com boa qualidade que ainda passarão por tratamentos térmicos posteriores, o que em geral acaba gerando defeitos, principalmente na etapa de remoção dos ligantes usados na moldagem. Assim, neste trabalho foi realizada uma breve revisão das principais técnicas de manufatura aditiva, que são utilizadas para materiais metálicos, poliméricos, cerâmicos e compósitos, para a fabricação de peças com alta complexidade geométrica. Por ser um processo de fabricação que pode ser aplicado para pós-cerâmicos, o método de fabricação por filamento fundido e as possíveis formulações que podem ser utilizadas para a impressão de peças foram o foco da revisão, em especial, a obtenção de fios por extrusão, bem como as dificuldades que normalmente ocorrem nos processos pós-moldagem, como por exemplo, na decomposição do veículo orgânico. Compreende-se, então, que estes defeitos não são eliminados totalmente na etapa de sinterização, o que reduz a resistência mecânica das peças obtidas por este método.

https://doi.org/10.5020/23180730.2021.11960
PDF/A

Referências

ARNESANO, A. et al. Fused deposition modeling shaping of glass infiltrated alumina for dental restoration. Ceramics International, v. 46, n. 2, p. 2206–2212, 2020.

BÄHR, F.; WESTKÄMPER, E. Correlations between influencing parameters and quality properties of components produced by fused deposition modeling. Procedia CIRP, v. 72, p. 1214–1219, 2018.

BEKAS, D. G. et al. 3D printing to enable multifunctionality in polymer-based composites: A review. Composites Part B: Engineering, v. 179, p. 107540, 2019.

BOSE, S. et al. Additive manufacturing of biomaterials. Progress in Materials Science, v. 93, p. 45–111, 2018.

BOURELL, D. et al. Materials for additive manufacturing. CIRP Annals - Manufacturing Technology, v. 66, n. 2, p. 659–681, 2017.

BOURELL, D. L. Perspectives on Additive Manufacturing. Annual Review of Materials Research, v. 46, n. 1, p. 1–18, 2016.

CANO, S. et al. Additive manufacturing of zirconia parts by fused filament fabrication and solvent debinding: Selection of binder formulation. Additive Manufacturing, v. 26, n. January, p. 117–128, 2019.

CONZELMANN, N. A. et al. Manufacturing complex Al2O3 ceramic structures using consumer-grade fused deposition modelling printers. Rapid Prototyping Journal, v. 26, n. 6, p. 1035–1048, 2020.

DAMINABO, S. C. et al. Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems. Materials Today Chemistry, v. 16, p. 1–23, 2020.

DENG, L. et al. Injection molding, debinding and sintering of ZrO2 ceramic modified by silane couping agent. Journal of the European Ceramic Society, v. 40, p. 1566–1573, 2019.

DIZON, J. R. C. et al. Mechanical characterization of 3D-printed polymers. Additive Manufacturing, v. 20, p. 44–67, 2018.

ENRÍQUEZ, E. et al. Ceramic Injection Moulding of engineered glass-ceramics: Boosting the rare-earth free photoluminescence. Ceramics International, v. 46, n. 7, p. 9334–9341, 2020.

FILIP, P.; HAUSNEROVA, B. Master fl ow curves as a tool to modelling ceramic injection molding. Ceramics International, v. 45, n. 6, p. 7468–7471, 2019.

GEBHARDT, A.; KESSLER, J.; THURN, L. 3D Printing Understanding Additive Manufacturing. 2nd. ed. [s.l.] Munich, 2019.

GIBSON, I.; ROSEN, D.; STUCKER, B. Additive Manufacturing Technologies. 2 nd. ed ed. [s.l.] Springer. New York, 2015.

GONZALEZ-GUTIERREZ, J. et al. Models to predict the viscosity of metal injection molding feedstock materials as function of their formulation. Metals, v. 6, n. 6, 2016.

GONZALEZ-GUTIERREZ, J. et al. Shaping , Debinding and Sintering of Steel Components Via Fused Filament Fabrication. 16th International Scientific Conference on Production Engineering - CIM2017, n. June, p. 99–104, 2017.

GONZÁLEZ-GUTIÉRREZ, J. et al. Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspective. Materials, v. 11, p. 1–36, 2018.

GONZÁLEZ-GUTIÉRREZ, J.; STRINGARI, G. B.; EMRI, I. Powder Injection Molding of Metal and Ceramic Parts. In: WANG, J. (Ed.). . Some Critical Issues for Injection Molding. IntechOpen ed. Londres: [s.n.]. p. 65–88.

GORDEEV, E. G.; GALUSHKO, A. S.; ANANIKOV, V. P. Improvement of quality of 3D printed objects by elimination of microscopic structural defects in fused deposition modeling. PLOS ONE, v. 13, n. 6, p. 1–19, 2018.

GORJAN, L. et al. Ethylene vinyl acetate as a binder for additive manufacturing of tricalcium phosphate bio-ceramics. Ceramics International, v. 44, n. 13, p. 15817–15823, 2018.

GORJAN, L. et al. Fused deposition modeling of mullite structures from a preceramic polymer and γ-alumina. Journal of the European Ceramic Society, v. 39, n. 7, p. 2463–2471, 2019.

GORJAN, L. et al. Effect of stearic acid on rheological properties and printability of ethylene vinyl acetate based feedstocks for fused filament fabrication of alumina. Additive Manufacturing, v. 36, p. 101391, 2020.

GU, B. K. et al. 3D Bioprinting Technologies for Tissue Engineering Applications. In: Cutting-Edge Enabling Technologies for Regenerative Medicine. [s.l: s.n.]. v. 1078p. 15–28.

HE, J. et al. Investigation of inhomogeneity in powder injection molding of nano zirconia. Powder Technology, v. 328, p. 207–214, 2018.

HU, G. et al. Optimizing the hardness of SLA printed objects by using the neural network and genetic algorithm. Procedia Manufacturing, v. 38, p. 117–124, 2019.

HWANG, S. et al. Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process. Journal of Electronic Materials, v. 44, n. 3, p. 771–777, 2015.

ISO/ASTM. ISO/ASTM 52900:2015 (E). Additive manufacturing — General principles — TerminologyGeneve, Switzerland, , 2015. (Nota técnica).

JIAO, C. et al. Preparation of Al2O3-ZrO2 scaffolds with controllable multi-level pores via digital light processing. Journal of the European Ceramic Society, v. 40, n. 15, p. 6087–6094, 2020.

KUANG, X. et al. Grayscale digital light processing 3D printing for highly functionally graded materials. Science Advances, v. 5, n. 5, p. 1–10, 2019.

KUKLA, C. et al. Debinding behaviour of feedstock for material extrusion additive manufacturing of zirconia. Powder Metallurgy, v. 62, n. 3, p. 196–204, 2019.

LIN, K. et al. 3D printing of bioceramic scaffolds-barriers to the clinical translation: From promise to reality, and future perspectives. Materials, v. 12, n. 7, p. 1–20, 2019.

LIU, C. et al. Image analysis-based closed loop quality control for additive manufacturing with fused filament fabrication. Journal of Manufacturing Systems, v. 51, n. October 2018, p. 75–86, 2019.

LIU, L. et al. Mouldability of various zirconia micro gears in micro powder injection moulding. Jornal of the European Ceramic Society, v. 35, p. 171–177, 2015.

MAMATHA, S. et al. 3D printing of complex shaped alumina parts. Ceramics International, v. 44, n. 16, p. 19278–19281, 2018.

MOTA, C. et al. Additive manufacturing techniques for the production of tissue engineering constructs. JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, n. 2, p. 1–17, 2012.

NGO, T. D. et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, v. 143, n. December 2017, p. 172–196, 2018.

NÖTZEL, D.; EICKHOFF, R.; HANEMANN, T. Fused filament fabrication of small ceramic components. Materials, v. 11, n. 8, p. 1–10, 2018.

OLAKANMI, E. O.; COCHRANE, R. F.; DALGARNO, K. W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties. Progress in Materials Science, v. 74, p. 401–477, 2015.

OURIQUE, P. A.; CRUZ, R. C. D.; ZORZI, J. E. Influência da cera de carnaúba no comportamento reológico de misturas usadas na moldagem por injeção em baixa pressão. Cerâmica, v. 61, p. 71–76, 2015.

PARANDOUSH, P.; LIN, D. A review on additive manufacturing of polymer-fiber composites. Composite Structures, v. 182, p. 36–53, 2017.

PENUMAKALA, P. K.; SANTO, J.; THOMAS, A. A critical review on the fused deposition modeling of thermoplastic polymer composites. Composites Part B: Engineering, v. 201, n. July, p. 108336, 2020.

POH, L. et al. Powder distribution on powder injection moulding of ceramic green compacts using thermogravimetric analysis and differential scanning calorimetry. Powder Technology, v. 328, n. 1, p. 256–263, 2018.

QIN, M. et al. Powder injection molding of complex-shaped aluminium nitride ceramic with high thermal conductivity. Journal of the European Ceramic Society, v. 39, n. 4, p. 952–956, 2019.

SHAKOR, P. et al. Review of emerging additive manufacturing technologies in 3d printing of cementitious materials in the construction industry. Frontiers in Built Environment, v. 4, n. January, 2019.

SOLOMON, I. J.; SEVVEL, P.; GUNASEKARAN, J. A review on the various processing parameters in FDM. Materials Today: Proceedings, n. xxxx, p. 10–15, 2020.

SUBRAMANIYAN, M. et al. State of art on fusion deposition modeling machines process parameter optimization on composite materials. Materials Today: Proceedings, n. xxxx, p. 1–8, 2020.

UMARAS, E.; TSUZUKI, M. S. G. Additive Manufacturing - Considerations on Geometric Accuracy and Factors of Influence. IFAC, v. 50, n. 1, p. 14940–14945, 2017.

WANG, J. et al. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. International Journal of Pharmaceutics, v. 503, n. 1–2, p. 1–20, 2016.

WANG, J. C.; DOMMATI, H.; HSIEH, S. J. Review of additive manufacturing methods for high-performance ceramic materials. International Journal of Advanced Manufacturing Technology, v. 103, n. 5–8, p. 2627–2647, 2019.

WANG, X. et al. 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering, v. 110, p. 442–458, 2017.

WOLFF, S. J. et al. A framework to link localized cooling and properties of directed energy deposition (DED)-processed Ti-6Al-4V. Acta Materialia, v. 132, p. 106–117, 2017.

WU, G. et al. Solid freeform fabrication of metal components using fused deposition of metals. Materials and Design, v. 23, n. 1, p. 97–105, 2002.

YUAN, S. et al. Polymeric composites for powder-based additive manufacturing: Materials and applications. Progress in Polymer Science, v. 91, p. 141–168, 2019.

ZOCCA, A.; LIMA, P.; GÜNSTER, J. LSD-based 3D printing of alumina ceramics. Journal of Ceramic Science and Technology, v. 8, n. 1, p. 141–148, 2017.

ZORZI, J. E.; PEROTTONI, C. A.; DA JORNADA, J. A. H. Moldagem por injeção em baixa pressão de peças complexas de cerâmicas avançadas produzidas com pós submicrométricos. Cerâmica, v. 50, p. 202–208, 2004.

Creative Commons License

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Revista Tecnologia